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Abstract. New solutions of the nonlinear (collisional) breakage equation are given using
analytical and asymptotic methods. The dynamic nonlinear breakage equation is transformed to a
linear one for some simple forms of the collision kernel; methods for treating the linear equation are
employed to obtain solutions for the nonlinear case. Furthermore, it is shown that under particular
conditions the particle size distribution can take asymptotically a self-similar form, i.e. the shape
of the (appropriately normalized) distribution is independent of time. The self-similar distribution
is obtained from the solution of a double nonlinear integral equation. The latter is solved in closed
form and numerically (after transformation to a boundary value problem) for simple forms of the
collision and breakage kernels; results for the self-similar distribution are presented and discussed.

1. Introduction

A breakage process may be callednonlinear if the breakage behaviour of a particle does not
depend only on its properties and external forces (as is the case inlinear breakage) but on the
state and properties of the entire system. Nonlinear breakage plays a significant role in many
chemical engineering applications, involving relatively dense dispersed systems (e.g. fluidized
beds [1]), as well as in various other fields including the size distribution of raindrops [2],
the size distribution of asteroids [3], and some types of crushing/milling operations [4]. The
simplest case of the nonlinear breakage is the binary collisional one where the fragmentation is
effected only through binary collisions between particles. In the atmospheric sciences literature
the termcollisional breakageis used, whereasspontaneous breakageis employed for linear
breakage [5]. In this paper the more general term nonlinear breakage is preferred in place of
collisional breakage to stress the intrinsic features of the problem.

The linear breakage problem has been studied very extensively [6] with regard to its
formulation [7], analytical solutions [8], asymptotic approximations [9, 10] and numerical
solution [11]; however, this is by no means the case for the nonlinear breakage problem.
The latter has been studied in combination with linear breakage and coagulation for raindrop
size spectra computation in a very specific case: i.e., when the fragments from all collisional
breakage events are just monomers. In the context of asymptotic solution of the linear breakage
problem, Cheng and Redner [12] formulated the general nonlinear breakage equation and
examined its general behaviour for homogeneous breakage functions. Furthermore, they
obtained some asymptotic results for the particle size distribution for the case of equal-size
binary breakage. It is worth noting here that the nonlinear breakage equation bears a similarity
(due to its quadratic form with respect to particle concentration) to the well known coagulation
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equation for which a huge body of literature exists concerning analytical and asymptotic
methods of solution [13].

The lack of a systematic treatment of the nonlinear breakage equation has motivated the
present study. An attempt in this direction is made here by presenting analytical and asymptotic
solutions for simple cases of the nonlinear breakage equation. The results obtained, aside from
their inherent value are expected to be useful for interpreting and/or correlating breakage data,
or possibly as a benchmark for testing numerical methods required for the solution of realistic
(and more complicated) cases.

In section 1 of this paper the general nonlinear breakage equation is formulated in
dimensionless form, and comments are made about the properties of the breakage functions.
The form of these functions which are used in the rest of the paper is also presented. In
section 2 some analytical solutions are derived for simple forms of the breakage functions. In
section 3 the asymptotic integral equation for the self-similar (in engineering terminology), or
scaling (in physics terminology), particle size distribution function is derived together with the
conditions for the existence of self-similarity. The purpose of section 4 is to give analytical or
semi-analytical solutions to the above integral equation for some simple breakage functions.
Typical examples of the self-similarity distribution are presented and discussed.

2. Problem formulation

The nonlinear breakage process can be described in general by the following nonlinear partial
integrodifferential equation:

∂f ′(x ′, t ′)
∂t ′

=
∫ ∞

0

∫ ∞
x ′
K ′(y ′, z′)b′(x ′, y ′; z′)f ′(y ′, t ′)f ′(z′, t ′) dy ′ dz′

−f ′(x ′, t ′)
∫ ∞

0
K ′(x ′, y ′)f ′(y ′, t ′) dy ′ (1)

where t ′ is time, x ′ is particle volume,f ′(x ′, t ′) is particle number density distribution,
K ′(x ′, y ′) is the rate of collision between two particles of volumex ′ and y ′ respectively,
andb′(x ′, y ′; z′) is the distribution of particles of volumex ′ resulting from the breakup of a
particle of volumey ′ due to collision with a particle of volumez′.

Let f ′0(x
′) = f ′(x ′, 0) be the initial particle size distribution. The total volume

concentration, the total number concentration and the mean size of the initial distribution
are, respectively:

M =
∫ ∞

0
xf ′0(x) dx (2a)

N0 =
∫ ∞

0
f ′0(x) dx (2b)

x0 = M

N0
. (2c)

The functions and variables already introduced can be expressed in dimensionless form, as
follows:

x = x ′

x0
y = y ′

x0
z = z′

x0
t = K ′(x0, x0)N0t

′

K(x, y) = K ′(x, y)
K ′(x0, x0)

f (x, t) = x0f
′(x ′, t)
N0

b(x, y; z) = x0b
′(x ′, y ′; z′)

(3)
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and equation (1) can be written as

∂f (x, t)

∂t
=
∫ ∞

0

∫ ∞
x

K(y, z)b(x, y; z)f (y, t)f (z, t)dy dz−f (x, t)
∫ ∞

0
K(x, y)f (y, t)dy.

(4)

This equation is similar to the linear breakage equation the only difference being that the
breakage functions are given as weighted integrals over the entire particle size range, rendering
the equation nonlinear.

Remarks about collision kernel and breakage kernel.In general, the collision kernel is the
same as the one used in the coagulation theory but without the effectiveness factor. The latter
is usually taken as unity in the coagulation theory to facilitate the mathematical study of the
coagulation equation [14]. Thus, the above collision kernel is exactly equivalent to that of the
coagulation equation and has the same properties. The only restriction on the form of the kernel
is that it must be symmetric with respect to its arguments, i.e.K(x, y) = K(y, x). The collision
kernel is called homogeneous, with an index of homogeneityλ, if K(ax, ay) = aλK(x, y).

As regards the breakage kernel, it is an extension of the usual kernel employed in linear
breakage theory with an additional parametric dependence onz. This extension reflects the
fact that a particle of sizey can give quite different fragment distributions upon collision with
two different particles of sizez1 andz2. Generally speaking, the functionb(x, y; z) should
satisfy the following requirements irrespective of thez value:

(i) Conservation of mass:∫ y

0
xb(x, y; z) dx = y. (5)

This equation stipulates that the total volume of particles resulting from the breakup of a
particle of volumey, must be equal toy.

(ii) ∫ k

0
xb(x, y; z) dx >

∫ y

y−k
(y − x)b(x, y; z) dx (6)

wherek < y

2 .
This expression states the requirement that only breakage events take place with no

rearrangement of mass allowed. It is an absolute condition based on the physical requirement
that when breakage occurs such that a particlex > y/2 is formed, the volume contained within
the smaller fragments(y − x) must contribute to the total volume of the fragments smaller
than(y − x). Further analysis concerning this condition can be found elsewhere [15]. For
binary breakage (two fragments per parent particle), the above restriction is simplified being
equivalent to a symmetric kernel in the senseb(x, y; z) = b(y − x, y; z).

The above restriction on the form of breakage kernel is very important but it seems to
be overlooked in the literature on linear breakage; this leads to physically unrealistic kernels
used to fit experimental data. For example, in [16] a kernel is employed that leads to a 0.33
mass fraction of daughter particles in the same class (with ratio of limits 1 : 2) with the parent
particle. Obviously this kernel violates the above restriction.

(iii) The number of particles resulting from breakage of a single particle of volumey after
its collision with a particle of volumez is given as

v(y; z) =
∫ y

0
b(x, y; z) dx. (7)
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The breakage kernel can be partially or completely homogeneous. There are two types of
partial homogeneity: (a) with respect to fragment distribution, i.e.b(x, y; z) = b(x/y; z)/y
and (b) with respect to the collision event, i.e.b(x, y; z) = b(x, y; y/z). In the case of complete
homogeneity the breakage kernel can be written asb(x, y; z) = b(x/y; y/z)/y. This case of
complete homogeneity can include discontinuous kernels. The simpler discontinuous kernel
is one that represents different fragment distributions for the small and the large particle in a
collision event; i.e. the form of the breakage kernel isb1(x/y)/y for y > z andb2(x/y)/y for
y < z.

In this paper some simple functions for the collision rate and breakage kernel are employed
to obtain analytical and asymptotic solutions to the nonlinear breakage equation. Collision rates
of theproduct form K(x, y) = xωyω and thesumform K(x, y) = xω + yω are considered.
These forms have been used extensively for analytical(ω = 1) [14] and asymptotic [17]
solutions of the coagulation equation.

As regards the breakage kernel, a power law form is assumed with the fragment distribution
independent of the size of colliding particles. The corresponding kernel has the form
b(x, y; z) = (ν + 2)(x/y)ν/y(0 > ν > −2) due to restrictions (i) and (ii) [18]. The mean
number of fragments per breakage event is(ν + 2)/(ν + 1). Also a discontinuous kernel is
assumed with random breakage only for the larger of the colliding particles and no breakage
at all for the smaller ones, i.e.b2(x/y) = 0.

3. Analytical solutions

As outlined above, the case of a homogeneous breakage kernel independent ofz, i.e. of the
form b(x/y)/y, is treated.

(i) Constant collision rate,K(x, y) = 1. Substituting into equation (4) and interchanging
the order of integration at the right-hand side, leads to

∂f (x, t)

∂t
= −Nf (x, t) +N

∫ ∞
x

1

y
b(x/y)f (y, t)dy (8)

whereN is the dimensionless total number concentration of particles, defined asN =∫∞
0 f (x, t)dx. The integration of both sides of equation (8) with respect tox, from x = 0 to
x = ∞, gives the following equation forN :

dN

dt
= (b0 − 1)N2 where b0 =

∫ ∞
0
b(x) dx. (9)

The solution of the above equation isN = (1− (b0−1)t)−1. Using the modified time variable

τ =
∫ t

0
N(t) dt = 1

1− b0
ln(1− (b0 − 1)t) (10)

equation (8) is transformed to

∂f (x, τ )

∂τ
= −f (x, τ ) +

∫ ∞
x

1

y
b(x/y)f (y, τ )dy. (11)

This is the well known equation of linear breakage with a constant breakage rate. The
linearity of the equation, in conjunction with the fact that the variable transformation leaves the
initial distributionf0(x) unchanged, allows the use of the superposition principle. This means
that the solution for an arbitraryf0(x) can be constructed by appropriately superimposing
solutions of the equation with a monodisperse initial distributionδ(x − 1). To obtain
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such a solution for a clearly nonlinear problem is gratifying. Thus, the general solution of
equation (11) is

f (x, τ ) =
∞∑
i=0

A(i)(x)
τ i+1e−τ

(i + 1)!
+ δ(x − 1)e−τ (12)

where

A(i+1)(x) =
∫ 1

x

l

y
b(x/y)A(i)(y) dy and A(0)(x) = b(x). (13)

An important observation is that the total numberN diverges at timetc = 1/(b0−1). The
above solution forf (x, t) is not valid fort > tc because the transformed timeτ is not defined.
This behaviour implies a shattering transition att = tc. The system no longer conserves the
mass because there is a loss of new phase of infinitesimally small particles. In the case of
linear breakage, shattering (if it exists) is independent of time (alwaystc = 0, [14]). The
present behaviour can be easily attributed to the nonlinearity of the process and it is similar
to the relevant phenomenon of gelation in the (also nonlinear) coagulation processes where a
finite transition (gelation time) exists [19].

The solution of equation (11) for monodisperse initial distribution and power law breakage
kernel is [15]

f (x, τ ) = e−τ xν
(
(ν + 2)τ

− ln(x)

)1/2

I1(2[τ(ν + 2) ln(1/x)]1/2) + δ(x − 1)e−τ (14)

whereI1 is the modified Bessel function of first kind and first order.
(ii) Product collision rateK(x, y) = xy. Substituting into equation (4), interchanging

the order of integration, and using the relation
∫∞

0 xf (x, t)dx = 1, results in the following
equation:

∂f (x, t)

∂t
= −xf (x, t) +

∫ ∞
x

b(x/y)f (y, t)dy. (15)

This is identical to the equation of linear breakage with a linear breakage rate. The superposition
principle can be used for the solution of this equation as well. The general solution for a
monodisperse initial distribution is obtained from the series (12) but with the real timet in
place of the transformed timeτ and

A(i+1)(x) =
∫ 1

x

b(x/y)A(i)(y) dy + (1− x)A(i)(x). (16)

For the product collision rate there is no shattering effect and the above solution is valid for
all times. The solution for the power kernel is given in terms of Kummer’s hypergeometric
confluent function [15]. For the caseν = 0 it takes a very simple form [20]:

f (x, t) = (2t + t2(1− x))e−tx + δ(x − 1)e−t . (17)

4. Self-similarity analysis

The cumulative volume fraction distribution is defined as

F(x, t) =
∫ x

0
xf (x, t)dx (18)

which, by inversion, leads to

f (x, t) = 1

x

∂F (x, t)

∂x
. (19)
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Transforming equation (4) in terms ofF(x, t) results in the following equation:
∂F (x, t)

∂t
=
∫ ∞
x

∫ ∞
0
K(y, z)f (z, t)B(x, y; z) dz dF(y, t) (20)

where

B(x, y; z) = 1

y

∫ x

0
xb(x, y; z) dx (21)

is the cumulative volume fraction breakage kernel and represents the fraction of the volumey

of a parent particle that belongs to fragments of volume smaller thanx after a collision with a
particle of volumez.

Assuming that a scaling of the formc(ξ) = F(x, t) holds, whereξ = x/s(t), and
substituting in equation (20) with the use of (19) results in

−ξc′(ξ)s ′(t) =
∫ ∞
ξ

∫ ∞
0
K(ζs(t), zs(t))B(ξs(t), ζ s(t); zs(t))c

′(z)c′(ζ )
z

dz dζ (22)

where the prime denotes the derivative of a function with respect to its argument.
In what follows it is assumed that the collision rate is homogeneous with a homogeneity

indexλ, and that the breakage kernel is completely homogeneous. Homogeneity ofb(x, y; z)
is equivalent to homogeneity ofB(x, y; z), i.e.B(x, y; z) = B(x/y; z/y). The homogeneous
kernel has been used extensively in linear breakage, not only for a theoretical asymptotic
analysis of the problem [9, 10] but also for correlating experimental data from solids
grinding [11]. Therefore, it is a natural extension to assume homogeneity for the nonlinear
breakage kernel as well. Furthermore, it seems reasonable to consider, as a first approximation,
that the outcome of a breakage event depends only on the size ratio of the two colliding particles
and not on the absolute value of the particle sizes involved. Thus, equation (22) can be written
as

−s ′(t)s−λ(t) = 1

ξc′(ξ)

∫ ∞
ξ

∫ ∞
0
K(ζ, z)B(ξ/ζ ; z/ζ )c

′(z)c′(ζ )
z

dz dζ. (23)

Obviously the right-hand side of this equation is time independent, and so must be the left-hand
side. Similarly the left-hand side isξ independent and so must be the right-hand side. This
means that equation (23) can be separated by taking each side equal to a constant. The latter
may be taken equal to unity without loss of generality. The asymptotic (large-time) solution
for s(t) is s(t) = ((λ − 1)t)1/(1−λ). This solution is meaningful only forλ > 1, which is a
necessary condition for self-similarity to hold. The respective condition for the case of linear
breakage isλ > 0. This difference between the two breakage models has also been noted
in [12].

Up to this point, it has been shown that the solution of the homogeneous nonlinear breakage
equation can be written asF(x, t) = c(xt−1/(1−λ)/(λ − 1)). The functionc(ξ) can be found
by setting the right-hand side of equation (23) equal to 1. For simplicity of demonstration, the
self-similarity functionϕ(ξ) = ξc′(ξ) is used in place ofc(ξ). Thus, the equation to be solved
for ϕ takes the form

ϕ(ξ) =
∫ ∞
ξ

∫ ∞
0
K(ζ, z)B(ξ/ζ ; z/ζ )ϕ(z)ϕ(ζ )

z2ζ
dz dζ. (24)

Having no term independent of the unknown function, equation (24) has, in principle, an
infinite number of solutions with most obvious oneϕ = 0. To select the required solution,
equation (24) must be solved in conjuction with the requirement of total mass conservation
which takes the form∫ ∞

0

ϕ(ζ )

ζ
dζ = 1. (25)
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5. Solution of the self-similarity equation

Equation (24) is a homogeneous nonlinear integral equation of the second kind of combined
Fredholm and Volterra type. Its solution even with numerical techniques is quite difficult.
Nevertheless, some analytical or semianalytical solutions (for specific simple cases) exist and
are given here. It is convenient to define the moments of the self-similarity functionϕ as

Mz =
∫ ∞

0
xzϕ(x) dx (26)

which will be used extensively in what follows.

Case I.

K(x, y) = xωyω B(x/y · z/y) = (x/y)µ.
The above form of functionB corresponds to the previously mentioned power law breakage
kernel withµ = ν + 2. Substituting the above functions into equation (24) and using the
variablesx, y in place ofξ, ζ for convenience, leads to

ϕ(x)

xµ
= Mω−2

∫ ∞
x

yω−µ−1ϕ(y) dy. (27)

A differentiation of this equation with respect tox results in a linear differential equation which
can be readily solved to give

ϕ(x) = kxµ exp

(
−Mω−2

xω

ω

)
. (28)

k is an integration constant which can be evaluated using the condition (25), so that

ϕ(x) =
(
Mω−2

ω

)µ

ω ω

0(µ/ω)
xµ exp

(
−Mω−2

xω

ω

)
. (29)

However, the momentMω−2 remains unknown. It can be evaluated by substituting
equation (29) in its definition (equation (26) forz = ω − 2), performing the integration
and solving the resulting algebraic expression. The final result is

Mω−2 = ω(ω−1)/(2ω−1)

(
0((µ− 1 +ω)/ω)

0(µ/ω)

)2−1/ω

. (30)

The distributionϕ(x) forµ = 2 (binary breakage) and several values ofω is shown in figure 1.
Obviously, asω increases the functionϕ(x) tends to shift to larger values ofx and to spread
out. In figure 2 the functionϕ(x) is depicted for two values ofω and two values ofµ (µ = 1.5
for ternary breakage andµ = 1.05 for breakage in 20 fragments). As the number of fragments
per breakage event increases the functionϕ(x) tends to shift to smallerx values becoming
broader.

Case II.

K(x, y) = xω + yω B(x/y, z/y) = (x/y)µ.
These functions are substituted into equation (24), which after some algebra yields

ϕ(x)

xµ
= M−2

∫ ∞
x

yω−µ−1ϕ(y) dy +Mω−2

∫ ∞
x

y−µ−1ϕ(y) dy. (31)
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Figure 1. Self-similarity distributionϕ(x) (case I) for uniform binary breakage(µ = 2) and several
ω values.

Figure 2. Self-similarity distributionϕ(x) (case I) for several pairs ofµ andω values.

Differentiation with respect tox, and integration of the resulting linear differential equation,
for the functionϕ(x)/xµ, leads to

ϕ(x) = kxµ−Mω−2 exp

(
−M−2

xω

ω

)
. (32)

The integration constantk is again evaluated to satisfy the mass conservation requirement (32).
The result is

k =
(
M−2

ω

)µ−Mω−2
ω ω

0((µ−Mω−2)/ω)
. (33)

As in the previous case, the quantitiesM−2 andMω−2 remain unknown and must be determined
from their definition, equation (26). Forz = −2, one obtains

M−2 =
(
ω0((µ−Mω−2 − 1)/ω)

0((µ−Mω−2)/ω)

)ω/(1+ω)

. (34)
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Figure 3. Self-similarity distributionϕ(x) (case II) for uniform binary breakage(µ = 2) and
severalω values.

Figure 4. Self-similarity distributionϕ(x) (case II) forω = 2 and twoµ values.

Similarly, for z = ω − 2, performing the integration and after some algebra, the following
trancendental equation is obtained forMω−2:

Mω−2 = ω
ω−1
ω(ω+1)

(
0((µ−Mω−2)/ω)

0((µ−Mω−2 − 1)/ω)

)ω−1
ω+1
(
0((µ−Mω−2 + ω − 1)/ω)

0((µ−Mω−2)/ω)

)
. (35)

The functionϕ(x) for µ = 2 and severalω values is shown in figure 3. Asω increases,ϕ(x)
tends to largerx value, but unlike case I it becomes narrower. Figure 4 showsϕ(x) for ω = 2
and twoµ values. In this case, as the number of fragments per breakage event increases,ϕ(x)

tends to be significantly displaced towards smallerx values, but retains its shape.

Case III. This is the same as case I, with the difference that only the larger particle breaks
after a collision event, i.e.B(x/y, z/y) = 0 for z > y. A rather unclear point must be resolved
here. The no-breakage condition for equation (1) corresponds tob(x, y; z) = δ(x− y). It can
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be confirmed by the fact that this rate eliminates the right-hand side of equation (1). However,
using directly the definition ofB(x, y; z) with respect tob(x, y; z), it is difficult to decide if
the no-breakage condition forB(x, y; z) is B(x, y; z) = 0 or B(x, y; z) = δ(x − y). But
upon inspection of equation (20) it is clear that the no-breakage condition (elimination of the
right-hand side of equation (20)) is indeedB(x, y; z) = 0. Substituting in equation (24), and
using a new unknown functionA(x) = ϕ(x)/xµ, the following equation results:

A(x) =
∫ ∞
x

yω−1A(y)

∫ y

0
zω+µ−2A(z) dz dy. (36)

The direct numerical solution of this equation is extremely difficult due to the upper limit
of the first integral. To proceed with the discretization, the asymptotic behaviour ofA(x)

for large x must be known. Fortunately, the above equation can be transformed into a
system of ordinary differential equations for which well-established numerical procedures
exist. Thus, differentiating equation (36) and using the new variableD(x) = ∫ x0 zω+µ−2A(z) dz
the following system of differential equations results:

dA(x)

dx
= −xω−1A(x)D(x) (37a)

dD(x)

dx
= xω+µ−2A(x). (37b)

A third differential equation can be written to facilitate the computation of the total mass of
the particle size distribution

dM(x)

dx
= xµ−1A(x). (37c)

The initial conditions for the solution of the above system of equations (37a)–(37c) is
A(0) = c (an arbitrary constant) andB(0) = M(0) = 0 (by definition). An additional
constraint arises from the requirement for conservation of the total mass asM(∞) = 1.
The constantc must be adjusted to satisfy this constraint. This is a typical nonlinear
boundary value problem and the best way for its solution is a shooting procedure. The
initial value problem is solved with an explicit Runge–Kutta integrator with self-adjusting
step and prespecified accuracy [21]. The convergence to the required value ofc is achieved
using the Newton–Raphson method with numerically computed derivatives. This procedure
is extremely effective. The self-similar distribution can be computed with an arbitrary pre-
selected accuracy (the only limit being the machine accuracy), taking a few seconds in a modern
personal computer. Some typical results, for binary breakage and severalω values, are shown
in figure 5. The influence ofω onϕ(x) is similar to that of case I, but much more pronounced.

Case IV. This is the same as case II but with the difference that only the larger particle breaks
after a collision event, i.e.B(x/y, z/y) = 0 for z > y. Substituting into equation (24) and
using the new unknown functionA(x) = ϕ(x)/xµ one obtains

A(x) =
∫ ∞
x

yω−1A(y)

∫ y

0
zµ−2A(z) dz dy +

∫ ∞
x

y−1A(y)

∫ y

0
zµ+ω−2A(z) dz. (38)

Differentiating with respect tox and introducing the new variablesD(x) = ∫ x0 zµ−2A(z) dz
andE(x) = ∫ x0 zµ+ω−2A(z) dz leads to the system of ordinary differential equations

dA(x)

dx
= −xω−1A(x)D(x)− x−1A(x)E(x) (39a)

dD(x)

dx
= xµ−2A(x) (39b)

dE(x)

dx
= xµ+ω−2A(x). (39c)
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Figure 5. Self-similarity distributionϕ(x) (case III) for uniform binary breakage(µ = 2) and
severalω values.

Figure 6. Self-similarity distributionϕ(x) (case IV) for uniform binary breakage(µ = 2) and
severalω values.

Equation (37c) must be added for the computation of the total mass. An asymptotic treatment
of this system in the region ofx = 0 shows that forµ + ω > 2 (which is always valid for
breakage in a finite number of fragments)( dA

dx )x=0 = 0. This is a major difference compared to
case II (splitting of both colliding particles) where the functionA(x) has a singularity atx = 0
(see equation (32)). The above condition allows one to use the initial conditionA(0) = c

wherec is an arbitrary constant. The other initial conditions areM(0) = D(0) = E(0) = 0
(from the definition of the respective functions). The constantcmust be adjusted to satisfy the
conditionM(∞) = 1. The numerical treatment here is similar to that of case III, except that
there is a system of four equations here instead of three. The functionϕ(x) for binary breakage
and several values ofω is plotted in figure 6, showing that the influence ofω onϕ(x) is rather
small. The functionϕ(x) is shifted to largerx values compared with case II (breakage of both
colliding particles).
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6. Concluding remarks

In this paper the general nonlinear (collisional) breakage equation has been studied. The
restrictions on the form of the breakage functions are discussed and some analytical solutions
are obtained for simple cases of these functions. From the solutions it appears that the shattering
behaviour of nonlinear breakage is closer to the kinetics of gelation of the coagulation equation
than to the kinetics of shattering of the linear breakage. Obviously, this is a consequence of
having the same order of nonlinearity as the coagulation equation.

It is also shown that the nonlinear breakage equation may admit self-similar solutions for
homogeneous breakage functions. Analytical forms of the self-similar solutions are offered
for some types of homogeneous breakage kernels. The functional form of this self-similarity
distribution is reminiscent of that of the linear breakage similarity theory [10] (modified Gamma
distribution). For discontinuous breakage functions the problem is transformed to a nonlinear
boundary value problem which has a straightforward numerical solution. Some typical results
for the self-similar distributions are given and discussed.

The solutions of the nonlinear breakage equation obtained in this paper can serve the
development of general numerical procedures which, in combination with realistic breakage
kernels, are necessary for the assessment and interpretation of experimental data in various
fields.
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